为提高效率,请提供以下信息,问题描述清晰能够更快得到解决:
【TiDB 版本】
V5.0.1
【问题描述】
在查询 ```
SELECT id FROM test.temp_wyy_container GROUP BY id HAVING count(1) > 1 LIMIT 10;
时,执行计划为
id task estRows operator info actRows execution info memory disk
Limit_12 root 10 offset:0, count:10 0 time:38.7s, loops:1 N/A N/A
└─Selection_13 root 10 gt(Column#57, 1) 0 time:38.7s, loops:1 1000 Bytes N/A
└─HashAgg_18 root 10 group by:test.temp_wyy_container.id, funcs:count(Column#59)->Column#57, funcs:firstrow(test.temp_wyy_container.id)->test.temp_wyy_container.id 0 time:38.7s, loops:1, partial_worker:{wall_time:53.27934705s, concurrency:5, task_num:407, tot_wait:1.772206924s, tot_exec:3m25.024801148s, tot_time:4m15.596407043s, max:53.279316613s, p95:53.279316613s}, final_worker:{wall_time:38.715596459s, concurrency:5, task_num:0, tot_wait:3m13.577827339s, tot_exec:3.3µs, tot_time:3m13.577840414s, max:38.715578703s, p95:38.715578703s} 12.8 GB N/A
└─TableReader_19 root 10 data:HashAgg_14 69376399 time:619.3ms, loops:411, cop_task: {num: 410, max: 1.22s, min: 151.5ms, avg: 514.4ms, p95: 735.8ms, max_proc_keys: 236991, p95_proc_keys: 216028, tot_proc: 3m12.4s, tot_wait: 219ms, rpc_num: 410, rpc_time: 3m30.9s, copr_cache_hit_ratio: 0.00} 131.9 MB N/A
└─HashAgg_14 cop[tikv] 10 group by:test.temp_wyy_container.id, funcs:count(1)->Column#59 69376399 tikv_task:{proc max:766ms, min:128ms, p80:527ms, p95:589ms, iters:67978, tasks:410}, scan_detail: {total_process_keys: 69380215, total_keys: 101652704, rocksdb: {delete_skipped_count: 0, key_skipped_count: 171380169, block: {cache_hit_count: 142210, read_count: 479878, read_byte: 6.13 GB}}} N/A N/A
└─TableFullScan_17 cop[tikv] 218397758 table:temp_wyy_container, keep order:false 69380215 tikv_task:{proc max:521ms, min:78ms, p80:390ms, p95:434ms, iters:67978, tasks:410}, scan_detail: {total_process_keys: 0, total_keys: 0, rocksdb: {delete_skipped_count: 0, key_skipped_count: 0, block: {cache_hit_count: 0, read_count: 0, read_byte: 0 Bytes}}} N/A N/A
报的这个问题。我把 `mem-quota-query`参数从1G修改成10G还是报。请问如何从内存优化的角度来处理这个问题???
---
若提问为**性能优化、故障排查**类问题,请下载<a href="/uploads/short-url/uGisshjxFnxx1KgpFOYbfeZjsc6" download="info_gathering.py">脚本</a>运行。终端输出的打印结果,请**务必全选**并复制粘贴上传。